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Finite-difference scheme to solve Schrodinger equations
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Comparisons are made among several three-node finite-difference schemes (FDS’s) for solving time-
independent Schrodinger equations. It is shown that the Mickens FDS is, although exact in some special
cases, generally two orders lower than the Numerov FDS. An alternative FDS, the combined
Numerov-Mickens FDS, is introduced. It has advantages of both the Numerov and the Mickens FDS’s.
Numerical comparison among these FDS’s is presented.
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I. INTRODUCTION

In physics, chemistry, and even some other natural sci-
ences, it is always interesting and important to integrate
Schrodinger equations numerically with both higher
speed and accuracy. For the same reason, much interest
is paid in solving the Schrodinger equations by using
different finite-difference schemes (FDS’s), even if they
are one dimensional (1D) and time independent [1],

Y'=F(x)¢, F(x)=2m[—E+V(x)]/#, (1

where E is the energy eigenvalue, m and # are the mass
and Planck constant, respectively, and V (x) is the poten-
tial function. The above equation can also result from
physical problems having more than one space dimen-
sion, such as the three-dimensional motion of particles
moving in a central force field [2,3].

In solving the 1D time-independent Schrédinger equa-
tion, great attention is paid to three-node finite-difference
schemes, which can be solved by Gauss elimination with
a rather small amount of computer storage and calcula-
tion [4]. Many of the three-node FDS’s can be written as

-v,_,+2DU,—-U,,,=0, U,=Ul(x,), F,=F(x,),
(2)
n=0,1,2,...,.N+1, x,=a+nh, 3)

with xo—,, Xy +;=>b, where both D and the relation be-
tween U, and ¢¥(x,) depend on the concrete FDS. For
example, there are the central FDS [4-6]

U,(C)=1v,, D(IC)=1+h’F,/2, 4)
the Numerov FDS (fourth-order) [4-7]
1+5T,
U,(N)=(1-T,)¢,, DIN)=—7—, (5)
1—T,
T,=h%F,/12, (6)

and the Mickens FDS [8,9]

u,M)=1vy, , (7
cos(f k), F,=—f31<0
cosh(f,h), F,=f3>0,

where ¥, =v(x,). We know that the central and
Numerov FDS’s are approximations to second and fourth
order in the mesh step length A, respectively [4-—6].
When F(x) remains constant in a region of x (i.e., F'=0),
the Mickens FDS is an exact FDS [8,9], for U, obtained
by this FDS equals the exact values of ¥(x,), assuming
that the rounding-off error is neglected. Therefore in this
sense the Mickens FDS is better than both the central
and Numerov FDS’s when F’'=0.

After realizing that the Mickens FDS is not an exact
FDS when F'(x)70, one may naturally ask, to which or-
der is the Mickens FDS an approximation? Does it al-
ways perform better than the central and Numerov
FDS’s? If not, can we construct an alternative FDS
which is still a three-node one, remains an exact FDS
when F’'=0, and performs better than, or at least almost
equally well as, the best of the above three FDS’s in nu-
merically solving (1) under any circumstances?

In the following we will answer the above questions.
First we will determine how accurate the Mickens FDS is
when F'#0. Then we construct an alternative FDS. Fi-
nally the comparison among all the above-mentioned
FDS’s and a short summary will be presented.

D(M)= (8)

Il. THEORY
It is easy to show that
D(C)=1+6T, ,
DM)=1+6T,+6T2+0.4(6T2)+ - - - , ©)
D(N)=1+4+6T,+6T>+6T3+ --- .
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In writing the second equality, we assume that T, <1,
which can always be satisfied for any function F(x) as
long as 4 is small enough. For convenience, we introduce
a transition FDS with

U,(T)=v,, D(T)=D(N), (10)

i.e., the difference equations of the transition and the
Numerov FDS’s are the same, but their solutions have
different meanings. U, in the transition FDS is just the
solution 9, of (1), as in the Mickens FDS, while U,, in the
Numerov FDS is U,(N)=(1—T,)¢,. Therefore the
transition FDS bears a close resemblance to both the
Numerov and the Mickens FDS’s, which is just what we
mean by “transition.” Considering that T, =0(h?), the
Numerov FDS is a fourth-order FDS, and the only
difference between the Numerov FDS and the transition
FDS is the different illustrations of U,(N) and U,(T);
one can derive readily the conclusion that the transition
FDS is generally of second order.
Now note that

D(T)=D(N)=D(M)+O(h®) , (11)

where u =0 (h?) means that there exists some positive
constant C,, independent of A, such that
lim, olu/h?| <C,. One might conclude that, in the re-
gions where F'#0, the Mickens FDS is generally of the
same order as the transition FDS, i.e., each is a second-
order FDS. Therefore the Mickens FDS is usually two
orders lower than the Numerov FDS when F'#0. But
the former has an important advantage over the latter be-
cause the former is exact when F'=0 [8,9].

From the Numerov and the Mickens FDS’s, we intro-
duce an alternative three-node FDS, which can be called
a combined Numerov-Mickens FDS (CNMFDS), with

U,(CNM)=U,(N), D(CNM)=D(M) . (12)

Relations between the CNMFDS and the Mickens and
the Numerov FDS’s are clear: The difference equations
(2) of the CNMPFDS and the Mickens FDS are the same,
which are different from that of the Numerov FDS in
that D(CNM) is different from D(N) in a sixth-order
term, for which one can write by using (12) and (9)

D(CNM)=D(M)=D(N)+0(h®) . (13)

U(CNM) and U(M) have different illustrations. U(CNM)
is an approximation of v,, while U(M) is of (1—T,)3,,.
We now investigate the accuracy of the CNMFDS.
First we consider the special case when F(x) is indepen-
dent of x, i.e., F'=0. The difference equation of the
Mickens FDS is an exact equation which discretizes the
original differential equation (1). Therefore the difference
equation multiplied by (1—1T,), which is a constant for
any fixed A when F'=0, will also be exact as is the Mick-
ens FDS. If we recall that this difference equation is the
same as that of the CNMFDS, it is evident that the

CNMPFDS, like the Mickens FDS, is exact when F'=0, -

and so in this case it is of much greater accuracy than the
Numerov FDS. Second we consider the accuracy of the
CNMFDS when F'#0. From (13), the difference be-
tween D(CNM) and D(N) is of the sixth order, which is
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two orders higher than the order of the Numerov FDS.
Hence the difference equation of the CNMFDS will
preserve the accuracy of the difference equation of the
Numerov FDS. As shown in (12), the relation between
the wave function #(x) and the discretized function U, in
the CNMFDS is the same as that in the Numerov FDS.
Therefore the CNMFDS is at least of the fourth order as
is the Numerov FDS when F'#0. Numerical experi-
ments will show that, when F'70, the CMFDS is indeed
of the fourth order and it performs sometimes much
better than, or almost equally as well as, the Numerov
FDS.
For further references, we rewrite the CNMFDS as

U,(CNM)=(1—T,)¥(x,), T,=h’F,/12, (14)
cos(f k), F,=—f2<0
cosh(f,h), F,=f%>0,
—U,_,(CNM)+2D(CNM)U,(CNM)—U, , (CNM)
=0. (16)

D(CNM)= (15)

III. NUMERICAL COMPARISONS

In this section, we will present two numerical compar-
isons among all of the FDS’s mentioned above, although
more comparisons are made in our actual calculations.
We think that these two examples are typical enough to
show potential uses of the CNMFDS in practical prob-
lems. The two examples are chosen not only for their im-
portance but also for the clarity of their analytical solu-
tions.

Our first example is a harmonic oscillator. The
Schridinger equation reads

¥ =(x2+20+1)y, 1=0,1,2,3,..., 17

which can be analytically solved by using Hermite poly-
nomials [2]. The second example is the radial equation of
a hydrogen atom, whose solution can be found in any
standard textbook on quantum mechanics [2,3].

For determination, we only consider boundary-value
problems and arbitrarily take / =5 with

P=(15x —20x3+4x°%)exp(—x2/2) (18)

in the first example and the normalized 4p state in the
second. In the following, we set boundaries at x =a and
x =b, and calculate ¥(x =a,b) from the corresponding
analytical solution at x =a,b. We would like to point out
that these selections will not restrict general conclusions.
We calculate the average absolute value of the error as

N
e=3 I¢n—¢ﬁ,"l/N , (19)
n=1

where ¢, =9(x,), x,=a +nh, h =(b —a)/(N +1), ¢, is
the analytical value, and 1,b£f’ the value calculated by some
concrete FDS. In Fig. 1, we calculate € in the first exam-
ple for different N with (a,b) to be either (—2,2) or (0,4).
In Fig. 2, the dependence of € on the number of nodes is
shown for the hydrogen 4p state.

Other cases, such as a 1D time-independent
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Schrodinger equation different from (14) and the H
atom’s or other choices of parameters (a, b), are of course
permitted. Although only 1wo experiments are shown in
the present paper, we find that they are generally in ac-
cordance with the numerous numerical experiments we
have done. All of the calculations are performed with
double precision on an AST386 computer (with 80287
coprocessor) using the FORTRAN language (Microsoft
V3.30).

We first look at the errors of the transition FDS. They
are close to that of the Numerov FDS when N is small,
which is more evident in Fig. 1. They are also close to
that of the Mickens FDS when N increases, and in fact
the errors resulting from these two FDS’s cannot be dis-
tinguished from each other in the figures. This can also
be seen by using the definition of the transition FDS, re-
calling (11). According to the error in Fig. 1 from small-
est to largest, the five FDS’s are the CNM, Numerov,
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FIG. 1. The dependence of the average error [defined in text,
see (19)] on the number of internal nodes N for the fifth eigen-
function of the harmonic oscillator (unnormalized, see text):
— % —, the Numerov FDS; -- X--, the transition FDS; —[J—, the
Mickens FDS; --00--, the CNMFDS; — A —, the central FDS. (a)
(a,b)=(—2,2). (b) (a,b)=(0,4).
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Mickens, transition, and second-order central FDS’s,
when N is large (h decreases). The CNMFDS is of the
same order as the Numerov FDS but the error of the
former is much less than that of the latter [in Fig. 1,
€(CNM)/e(N)~0.1]. It is worthwhile to point out in
some other experiments (this can also be seen from a few
data points shown in Fig. 2) that it is possible that the er-
ror in the CNMFDS may be a little larger than that in
the Numerov FDS. But it is clearly shown that the order
of the CNMFDS and the Numerov FDS is the same for
F'70. Furthermore, in all the numerical experiments we
have carried out, the CNMFDS works when F’'#0 al-
most equally well with, if not better than, the Numerov
FDS.

Also shown in the figures is that the error of the Mick-
ens FDS is less than that of the Numerov FDS when N is
small, which might not be so in our other experiments.
In addition, when the error is too small, the rounding-off
error could disturb drastically the performance of the
CNMFDS and the Numerov FDS. In Fig. 1 this occurs
when the error € is somewhat smaller than 107°,

IV. SUMMARY

We have compared a few FDS’s which numerically
solve the one-dimensional time-independent Schrodinger
equation, such as the Numerov, Mickens, and central
FDS’s, as well as the transition FDS introduced in the
present paper for illustration. It is found that the Mick-
ens FDS, although exact when F’'=0, is usually a
second-order FDS when the potential function depends
on the coordinate (i.e., F'#0). An alternative FDS, the
combined Numerov-Mickens FDS (CNMFDS), is
presented. It possesses the advantages of both the
Numerov and the Mickens FDS’s in that it is a fourth-
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FIG. 2. The dependence of the average error [defined in text,
see (19)] on the number of internal nodes N for the normalized
4p state of the hydrogen atom: —%* —, the Numerov FDS; -- X --,
the transition FDS; —-[-, the Mickens FDS; --[0--, the
CNMFDS; — A —, the central FDS. (a,b)=(0.1,40.1).



3802 BRIEF REPORTS 47

order (exact) FDS when the potential function depends
(does not depend) on the coordinate. Our numerical ex-
periments show that in some cases the CNMFDS works
at least equally well as the Numerov FDS, while in the
other experiments it works much better than the latter.
In this sense, the CNMFDS is better than the Numerov
FDS as well as the other FDS’s such as the Mickens and
the central FDS’s. We would like to stress that, although
a complete numerical comparison of the CNMFDS and
the Numerov FDS in different cases in crucial for getting
an evaluation of the CNMFDS, some numerical experi-
ments (only a few of them are shown in the present paper)
do show that the CNMFDS has potential uses in practi-

cal calculations.

Note added in proof. One of our conclusions is that the
Mickens FDS is of second order in the space step h.
After our paper was submitted, the authors were in-
formed that Professor R. E. Mickens has also been aware
of this [10]. We thank Professor Mickens for pointing
out this fact.
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